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The well-known difficulties encountered in the theory of plasticity are connected with 
the fact that, in contrast to elastic distortions $ik, plastic distortions ~Pk cannot be 
described by simple relations such as Hooke's law [2]. This is due to the dependence of 
~Pk on the loading history. Different types of governing relations are adopted in classical 
strength theories, these relations being generalized empirical equations obtained from tests 
of macroscopic specimens [2]. 

A basically different approach is offered by the physical theory of plasticity, in which 
plastic strain is regarded as the cooperative effect of the motion of dislocations and other 
defects in the crystalline lattice. Such a description of plastic deformation is statistical 
and requires the solution of a system of kinetic equations for the distribution functions of 
the defects [3-5]. In this case, the mathematical problem becomes very complicated, and the 
advantage of simplicity offered by a phenomenological approach is lost. However, the 
benefit of physical theory may be not so much in the solution of specific problems as in the 
proof of various hypotheses which are the basis of phenomenological theories and, in parti- 
cular, governing relatibns. 

Here attempt to make a link between the physical (dislocation) theory and the phenomeno- 
logical theory of plasticity. Governing relations are obtained for the rate of plastic 
distortion 8Pk on the basis of representations of dislocations in the case of their one- 

velocity flow. We also formulate a closed system of equations for a particular and simple 
variant of the theory of plasticity. Several specific applications of these equations are 
given. 

i. The elastic behavior of a body under an external load is described by the dynamic 
equations [2] 

(~0.. "" iJ,j + ]i = pu~. (i.i) 

Here, o~ is the tensor of the external elastic stresses; fi is the density of the body 
13 

0 forces; p is the density of the body; u i are the elastic displacements; the subscript 

following the comma denotes differentiation with respect to the corresponding Cartesian 
coordinate, while the superimposed dot denotes the derivative with respect to time. Closure 

0 be written in of system (i.i) requires that the relations for the elastic distortions 8ik 
terms of the elastic displacements u? [2]: 

1 

~& 0 (1.2) 

and the use of Hooke's law [2] 

oiO 0 0 C~j~l~hZ ---- ( i .  3 )  
= C~jklek l ,  

where Ciiks are elastic constants of the material; e~s are elastic strains (the symmetrical 
part of ~s 

The elastoplastic behavior of the body is determined by both the elastic 8~s and plastic 
~Z distortions. Meanwhile, there are no simple relations of the type (1.3) for $Ps This 

is related physically to the complex character of evolution of dislocation ensembles parti- 
cipating in plastic deformation. In the general case, the physical (dislocation) description 
of plastic deformation entails the solution of the kinetic equation for the distribution 
functions of the dislocations [3-5]. The complexity of the problem makes it impossible to 
obtain governing relations directly for the rate of plastic distortion ~Ps However, the 
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situation is different in the case of a one-velocity flow of dislocations. Here, it is no 
longer necessary to solve kinetic equations, andgoverning relations can be obtained (from 
first principles) for ~s 

In the continuum theory of dislocations - which is widely used in the statistical des- 
cription of dislocations - the main characteristics are the tensors of dislocation density 
~n:s and.dislocatiOnp flux. density Jk~o. These tensors are connected to the tensor of plastic 
dlstortzon 8ik by the formulas [3] 

~PZ=--eP =~,m; (1.4) 

Jk,= ~ (1.5) 

(gpmk is an antisymmetric unit tensor). On the other hand, the tensors ~ps and Jks can be 
expressed through the dislocation distribution function f(~, b; r, t) by means of the 
relations [4, 5] 

apz = .~_~ ~pbz] (~ b; r~ t); ( i. 6) 

Zkz = epm~ ~ ~pbwm (% b) / (% b; r, t),. ( 1 .7 )  

where T is the unit vector of the tangent to the dislocation line; b is the Burgers vector; 
v(~, b) is the vector of dislocation velocity; r is the radius vector of a point of the 
body; t is time. Summation is carried out in (1.6), (1.7) over all possible values of the 
vector pairs (T, b). Equations (1.4)-(1.7) express the relationship between the macroscopic 
~s and microscopic f(~, b; r, t) characteristics. 

The dislocation velocity vector v(~, b) depends in the general case on the type of 
dislocation, i.e., on the vectors (~, b). Let us examine the special case of a one-velocity 
flow of dislocations, when the velocity vector v(~, b) is independent of (T, b) for dis- 
locations which are all identical. Then v m is taken from under the summation sign in (1.7), 
and the remaining sum turns out to be equal to ~ps It follows from this that the tensors 
~ps and Jks are related in this case: 

'Yhl = ~k~plV~. ( 1 . 8 )  

Inserting Eqs. (1.4) and (1.5) for the tensors ~ps and Jk~ into (1.8), after some simple 
transformations we obtain 

= - + ( 1 . 9 )  

Equations (1.9) can be regarded as the governing relation (in differential form) for plastic 
distortion 8ks linking the tensor of the rate of plastic distortion ~ks with the tensor of 

the effective stresses at.. The latter enter into (1.9) through the dependence of the dis- 
13 

location velocity vector v on or.. We will assume that the dynamic law for the dislocations 
13 

is known either from experiment or from the microscopic theory of dislocation mobility (see 
[6], for example). Without concretizing until the end, we write the dynamic law for disloca- 
tions in the form 

v ~ A [ ~  (r, i)], (1.10) 

where A is a vector function of the effective plastic stress or.. The effective stresses 
x3 

are made up of the external a~j and internal (connected with the incompatibility of the plastic 
strain) stresses oij: 

o 
ai~ = oij + o~;. (i. ii) 

As the external stresses, the internal stresses can be determined by means of (1.3). Here, 
0 we use the elastic distortions Smn due to the incompatibility of the plastic instead of $ks 

distortion. According to [7], for 8mn we find that 

~mn (r, t) = --  S cijkzGjn,im (B, T ) ~  (,', t')dr'dt" -- ~ (r, t). (1 .12)  
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Fig. 1 

Here, Gin is the dynamic Green function of the elastic problem; R = r - r'; T = t - t' 

Thus, Eqs. (1.9), augmented by the dynamic law for the dislocations (i. I0) and rela- 
tions (1.1)-(1.3), (i. Ii), (1.12) for determination of the effective stresses, constitute 
a closed system which describes the development of plastic distortion over time. One 
feature of the system is that it describes plastic behavior directly on the basis of 
physical laws of dislocation motion - the dislocations being elementary carriers of 
plastic strain. 

The unusual form of the equations obtained may cause some uncertainty. In fact, on 
the one hand, they include the dynamic law of dislocation motion (i.i0). On the other 
hand, they do not include any information on dislocation multiplication or other changes 
in dislocations which occur in the general case [6]. The fact is that the above assumption 
regarding a one-velocity flow of dislocations precludes the multiplication of dislocations 
in a volume. Any physical process of multiplication in the volume of the body would lead 
to the formation of dislocations of a different sign. These dislocations, being located 
in the same field of effective stresses o[., would also have velocity vectors of opposite 

13 
sign. The latter result would contradict the assumption of a one-velocity dislocation 
flow. It is the exclusion of dislocation multiplication in the volume of the body (but not 
on its surface) which so significantly simplifies the description of plastic behavior. 
Here, dislocations are created on the surface of the body and propagate with the plastic 
distortion front. The gradient of plastic distortion completely determines the dislocation 
density, in accordance with (1.4). Dislocations of this type are referred to as geometri- 
cally necessary dislocations [8]. 

To avoid misunderstandings, we should discuss certain other important aspects of the 
problem. First, the assumption of a one-velocity flow actually pertains to the geometri- 
cally necessary dislocations. Geometrically necessary dislocations of one type can actually 
be represented by physical dislocations of several types. For example, a dislocation sub- 
boundary in a crystal with a given orientation can be represented by different systems of 
dislocations [6]. Second, although multiplication is prohibited for geometrically necessary 
dislocations in the volume of the body, processes involved in recharging are permitted for 
the physical dislocations which represent them. In these processes, dislocations are 
annihilated and generated as they interact. Such a situation may occur, for example, in a 
polycrystalline material in the successive movement of slip from grain to grain across the 
boundary between the grains. 

On the whole, the equations obtained are applicable under conditions of large gradients 
of plastic distortion. Such conditions are realized, in particular, in the propagation of 
elastoplastic waves. 

2. Now let us examine specific applications of the formalism presented above. As 
the first problem we take a shear crack in an elastoplastic body (Fig. I). We will assume 
that the crack is semi-infinite and that the plastic zone S is small. Thus, the stresses 
in the plastic zone are completely determined by the stress intensity factor at the crack 
tip K [9]. We will represent the development of plastic flow as the radial motion of 
screw dislocations emitted by the crack tip. The dislocation density tensor ~ps has a 
unique nontrivial component =zz = =, and we write Eq. (1.9) as follows (in cylindrical 
coordinates r, r z, with the z axis being normal to the plane of the drawing and directed 
along the crack front) 

-- ~+~,,v. (2. I) 

Here, it is considered that the vector v has only a radial component v which depends on 
the shear stresses O@z = o in the radial plane. Let this dependence have the form 
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where o i is the critical stress associated with dislocation movement; F(o +) is a scalar 
function, In the quasistatic case, by using Eqs. (1.1)-(1.3) and (1.12) we can obtain the 
following expressions for the external o~ and internal Oz~ stresses in the plastic zone 

t K " 

I p : ~ ---- M (r, ~; r', ~') ~ . r  (r , ~') dS'. 
S 

Here, m is a kernel: 

i ~ { �9 
M ( r , ~ ; r ' , ~ ' ) = - - I m  T ~  ~ -~' e'~ ; 

= reir ~' = r'ei@'; ~ is the shear modulus; S is the region occupied by the plastic zone 
in the plane r, ~; Im is the imaginary part of the complex function. 

We will limit ourselves to the static solution corresponding to the state at t § ~, 
when the plastic zone is formed and dislocation motion has ceased. At v r = 0 and ~z = 0, 

Eq. (2.1) is satisfied exactly, and the condition of limit equilibrium of the dislocations 
~o + = el) reduces to 

s ~ , r ,  ~)p~.~t ~ ~')dS'----Im ' - ]Z~  e ~ = a l .  (2 .2)  

As can be verified by direct substitution, the solution of (2.2) will be 

~ z =  K~ cos~ r ~ R  0cos~, 
~i r ~ �9 

where R0 = K2/~o~. This result agrees with the well-known solution obtained by the usual 

methods in [i0]. 

As the second application, we will examine the propagation of a plane plastic wave 
in a uniformly stressed infinite body (Fig. 2). In contrast to the case of an elastic wave, 
propagation of a plastic wave is associated with energy dissipation, and nondecaying motion 
must be maintained as a result of the work of external forces (in the present case, uniform 
elastic tensile stresses Oy v = const). Equation (1.9) allows the homogeneous solution 
~s = const in the region w~ere v = 0 The plastic wave can be represented as a piecewise- 

uniform solution. Let the plastic wave propagate along the x axis, and at the given moment 
of time let the wave front coincide with the plane x = 0 (see Fig. 2). For a wave of the 
simplest form, we put ~s = 0 at x > 0 and ~y = BP = const at x < 0. The remaining compo- 

nents of 8 P_ are nontrivial. Inserting this discontinuous solution of (1.9) into (1.4), we 
find that'~e surface density of geometrically necessary dislocations on the front of the 
plastic wave 

~ = ~ 8  (z), (2 .3 )  
where ~(x) i s  the  Dirac  d e l t a  f u n c t i o n .  A d i s l o c a t i o n  d e n s i t y  of  the  form (2 .3)  i s  a l so  
c h a r a c t e r i s t i c  of  the  d i s l o c a t i o n  model of  a shock f r o n t  proposed by Smith [1] .  

To determine the rate of propagatibn w of the front of the plastic wave, we need to 
assign a physical set of dislocations which has the necessary density (2.3) and can move 
conservatively in the ositive direction of the x axis under the influence of uniform tensile 
stresses a~ = const. This requirement is satisfied by a system of two kinds of edge disloca- 

tions sliding in planes inclined at a 45 ~ angle to the y axis (see Fig. 2). Due to symmetry, 
each of these dislocation systems has the same distribution function f(~, b; r, t) 

~P/2by 6(x -- wt) and velocity component v x. Equating the dislocation flux densities (1.7), 
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Fig. 2 

(i.8), we find w = v x = v/~ (v is the velocity of the physical dislocation in the stress 
field O~y = const). 

In reality, plastic waves can also occur in the propagation of an elastis shock wave 
[ii]. In connection with this, it is interesting to examine the rate of erosion of the 
plastic wave front. To do this, we assume ~y~ = ~(x, t) to now be a smooth function. The 

other assumptions made previously remain in force. The below relative to $(x, t) then 
follows from (1.9) 

~ + ~% = o. ( 2 . 4 )  

Here, v s = Vx(X , t) depends on x and t. The function ~P(x, t) satisfies the boundary 
conditions 

~ ( -  oo, 0 = P~, ~ ( o o ,  t) = o .  

We take the following power law for the dislocation velocity [6] 

(2.5) 

where v0, o 0, and m are constants; o + are the effective shear stresses (o + = i/v~ ~). We 
have the following for s + in the isotropic case 

YY 

o ~ e (2.6) 

(~ is the Poisson's ratio). 

Let x = x(~, t) describe the motion of a point of constant value ~P = 8~. 

allowance for (2.5) and (2.6), the below equation follows from (2.4) [12] 

P I I  ~ ( 2 . 7 )  

8P(x0) = 8P(x = x0, t = 0). We write the solution of (2.7) as 

Then, with 

We then put m = i. 

z = x0 + V~" [V~ % 

Let 

PP (Xo) = p~_, x o < O; 

13 P (xo) = PP - ~xo,. 0 <~ Xo < Axo; i~ P (Xo) = 0, xo > AXo~ 

where Ax 0 = ~P/x is the initial width of the plastic wave front; A is a constant. In this 

case, we find the following from (2.7) for the width of the plastic wave front at an ari- 
trary moment of time t 
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% ~t 13~t. AX (t) = AX o + 2 (l - -  ~) o------~ 

As is evident, kx(t) increases in proportion to the time t and the amplitude of the plastic 
wave ~P. 
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NUMERICAL ANALYSIS OF THE NONLINEAR STABILITY OF 

VIBRATIONS IN A PLATE LYING ON A LAYER OF VISCOUS, 

COMPRESSIBLE LIQUID 

V. N. Belonenko, O. Yu. Dinartsev, and 
A. B. Mosolov UDC 532.5 

Problems related to the stability of vibrations of mechanical systems that are in con- 
tact with a viscous, compressible liquid often arise in many areas of science, engineering, 
and contemporary production. A typical example is the problem concerning the stability of 
heavily loaded friction nodes under conditions of increased vibration. 

In orderto take into account the compressibility of liquid described by the Newtonian 
model with linear viscosity, one must consider both the shearing viscous stresses and the 
volumetric viscous stresses (which is usually not the case) [i]. The assumption that the 
coefficient of volumetric viscosity is zero is in most cases unjustified, and for some 
liquids the coefficient of volumetric viscosity can be many times (sometimes many orders) 
greater than the coefficient of ordinary shearing viscosity. Also, when the forces that 
act on a liquid are intense, one cannot ignore the dissipation of energy for a change in 
volume. For vibrational processes that are accompanied by a change in volume, the effect 
of volumetric viscosity can be very substantial. 

i. Formulation of the Problem and a Determination of Equations. We will consider the 
one-dimensional problem of forced vibrations in a massive layer S that lies on a layer of 
viscous compressible liquid (Fig. I) acted on by a periodic force F(t). 

The basic equations of the problem are: 
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